Hendrik Antoon Lorentz ( ; ; 18 July 1853 – 4 February 1928) was a Dutch theoretical physicist who shared the 1902 Nobel Prize in Physics with Pieter Zeeman for their discovery and theoretical explanation of the Zeeman effect. He derived the Lorentz transformation of the special theory of relativity, as well as the Lorentz force, which describes the force acting on a charged particle in an electromagnetic field. He was also responsible for the Lorentz oscillator model, a classical model used to describe the anomalous dispersion observed in dielectric materials when the driving frequency of the electric field was near the resonant frequency of the material, resulting in abnormal refractive indices.
Lorentz received many other honors and distinctions, including a term as Chairman of the International Committee on Intellectual Cooperation, the forerunner of UNESCO, from 1925 until his death in 1928.
From 1866 to 1869, Lorentz attended the Hogere Burgerschool in Arnhem, a new type of public high school recently established by Johan Thorbecke. His results in school were exemplary; not only did he excel in the physical sciences and mathematics, but also in English, French, and German. In 1870, he passed the exams in classical languages, which were then required for admission to university.
In 1870, Lorentz entered Leiden University, where he was strongly influenced by the teaching of astronomy professor Frederik Kaiser; it was his influence that led Lorentz to become a physicist. He earned his B.Sc. in 1871, and the following year returned to Arnhem to become a night school teacher. In 1875, he received his Ph.D. under Pieter Rijke with a thesis on the reflection and refraction of light, in which he refined the electromagnetic theory of James Clerk Maxwell.
During his first 20 years at Leiden, Lorentz was primarily interested in the electromagnetic theory of electricity, magnetism, and light. After that, he extended his research to a much wider area while still focusing on theoretical physics. He made significant contributions to fields ranging from hydrodynamics to general relativity. His most important contributions were in the area of electromagnetism, the electron theory, and relativity.
In 1910, Lorentz decided to reorganize his career; his teaching and management duties at Leiden University were taking up too much of his time, leaving him little time for research. He initially asked Albert Einstein to succeed him as Professor of Theoretical Physics at Leiden. However, Einstein did not accept, because he had just taken up a position at ETH Zurich and the prospect of having to fill Lorentz's shoes made him shiver. He ultimately chose Paul Ehrenfest as his successor.
In 1912, Lorentz resigned from his chair at Leiden University to become Curator of the Physical Cabinet at Teylers Museum in Haarlem. He continued to teach at Leiden as Extraordinary Professor, delivering his famous "Monday morning lectures" on new developments in theoretical physics.
In 1899 and again in 1904, Lorentz added time dilation to his transformations and published what Poincaré in 1905 named Lorentz transformations.
It was apparently unknown to Lorentz that Joseph Larmor had used identical transformations to describe orbiting electrons in 1897. Larmor's and Lorentz's equations look somewhat dissimilar, but they are algebraically equivalent to those presented by Poincaré and Einstein in 1905. Lorentz's 1904 paper includes the covariant formulation of electrodynamics, in which electrodynamic phenomena in different reference frames are described by identical equations with well defined transformation properties. The paper clearly recognizes the significance of this formulation, namely that the outcomes of electrodynamic experiments do not depend on the relative motion of the reference frame. The 1904 paper includes a detailed discussion of the increase of the inertial mass of rapidly moving objects in a useless attempt to make momentum look exactly like Newtonian momentum; it was also an attempt to explain the length contraction as the accumulation of "stuff" onto mass making it slow and contract.
In 1906, Lorentz's electron theory received a full-fledged treatment in his lectures at Columbia University, published under the title The Theory of Electrons.
The increase of mass was the first prediction of Lorentz and Einstein to be tested, but some experiments by Walter Kaufmann appeared to show a slightly different mass increase; this led Lorentz to the famous remark that he was "au bout de mon latin" ("at the end of my knowledge Latin" = at his wit's end) The confirmation of his prediction had to wait until 1908 and later (see Kaufmann–Bucherer–Neumann experiments).
Lorentz published a series of papers dealing with what he called "Einstein's principle of relativity". For instance, in 1909, 1910,
Though Lorentz still maintained that there is an (undetectable) aether in which resting clocks indicate the "true time":
Lorentz also gave credit to Poincaré's contributions to relativity.
Lorentz was also asked by the Dutch government to chair a committee to calculate some of the effects of the proposed Afsluitdijk (Enclosure Dam) flood control dam on water levels in the italic=no. Hydraulic engineering was mainly an empirical science at that time, but the disturbance of the tidal flow caused by the Afsluitdijk was so unprecedented that the empirical rules could not be trusted. Originally, Lorentz was only supposed to have a coordinating role in the committee, but it quickly became apparent that Lorentz was the only physicist to have any fundamental traction on the problem. In the period 1918 till 1926, Lorentz invested a large portion of his time in the problem. Lorentz proposed to start from the basic hydrodynamic equations of motion and solve the problem numerically. This was feasible for a "human computer", because of the quasi-one-dimensional nature of the water flow in the italic=no. The Afsluitdijk was completed in 1932, and the predictions of Lorentz and his committee turned out to be remarkably accurate. One of the two sets of locks in the Afsluitdijk was named after him.
Unique 1928 film footage of the funeral procession with a lead carriage followed by ten mourners, followed by a carriage with the coffin, followed in turn by at least four more carriages, passing by a crowd at the Grote Markt, Haarlem, from the Zijlstraat to the Smedestraat, and then back again through the Grote Houtstraat towards the Barteljorisstraat, on the way to the "Algemene Begraafplaats" at the Kleverlaan (northern Haarlem cemetery), has been digitized on YouTube. Hendrik Lorentz Amongst others, the funeral was attended by Albert Einstein and Marie Curie.
Lorentz is considered one of the prime representatives of the "Second Dutch Golden Age", a period of several decades surrounding 1900 in which the natural sciences flourished in the Netherlands.
Richardson describes Lorentz as:
M. J. Klein (1967) wrote of Lorentz's reputation in the 1920s:
Einstein wrote of Lorentz:
Poincaré (1902) said of Lorentz's theory of electrodynamics:
Paul Langevin (1911) said of Lorentz: (translated by J. B. Sykes, 1973).
Lorentz was chairman of the first Solvay Conference held in Brussels in the autumn of 1911. Shortly after the conference, Poincaré wrote an essay on quantum physics which gives an indication of Lorentz's status at the time:
Zeeman effect
Special relativity
1914. In his 1906 lectures published with additions in 1909 in the book "The theory of electrons" (updated in 1915), he spoke affirmatively of Einstein's theory:
General relativity
Quantum mechanics
Civil work
Family
Death and funeral
Recognition
A man of remarkable intellectual powers. Although steeped in his own investigation of the moment, he always seemed to have in his immediate grasp its ramifications into every corner of the universe. The singular clearness of his writings provides a striking reflection of his wonderful powers in this respect. He possessed and successfully employed the mental vivacity which is necessary to follow the interplay of discussion, the insight which is required to extract those statements which illuminate the real difficulties, and the wisdom to lead the discussion among fruitful channels, and he did this so skillfully that the process was hardly perceptible.
For many years physicists had always been eager "to hear what Lorentz will say about it" when a new theory was advanced, and, even at seventy-two, he did not disappoint them.
Awards
See also
Publications
Further reading
External links
|
|